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Abstract

Since the 1980s, observations show the Arctic surface has warmed four times more than the global
mean. Over the Arctic Ocean, this recent large warming is connected to sea ice loss. While earth
system models are useful tools for prediction, exact replication of observed Arctic warming and sea
ice loss is not expected in freely-evolving models because of internal climate variability. Previous
studies have shown that historical hindcasts with model winds nudged to reanalysis can repro-
duce recent Arctic warming and sea ice loss. However, the influence of observed winds on these
recent Arctic changes in absence of anthropogenic forcing has not been assessed. Here, we show
that nudging to recent (1980-2023) observed winds alone in a pre-industrial model experiment
does not reproduce the magnitude of observed warming and sea ice extent loss. This means that
the large-scale winds are not the primary driver of recently observed large Arctic trends. Yet, the
winds do partially reproduce the interannual, seasonal, and spatial variability, especially in spring.
We also show that in a pre-industrial climate simulation, these results are largely independent of
mean state sea ice thickness. In short, the observed winds drive part of the Arctic temperature and
sea ice variability but not long-term trends.

1. Introduction

Since reliable satellite records began in 1979, the Arctic surface has warmed nearly four times more
than the global surface (Rantanen et al 2022) and Arctic sea ice area has decreased in all months, espe-
cially during late summer (Simmonds 2015, Meier et al 2021). This Arctic warming (Gillett et al 2008,
Najafi et al 2015) and sea ice loss (Min et al 2008, Kay et al 2011, Stroeve et al 2012, Kirchmeier-Young
et al 2017, Mueller et al 2018) is primarily driven by anthropogenic emissions. In earth system mod-
els, both warming and sea ice loss are robust features (Manabe and Stouffer 1980, Holland and Bitz
2003, England et al 2021) that are predicted to continue throughout this century (Holland and Landrum
2021). Yet there remains considerable uncertainty in projections of Arctic temperature (e.g. Holland and
Landrum 2021) and sea ice conditions (e.g. Jahn et al 2024). For these projections, two large sources of
uncertainty are inter-model structural differences (Massonnet et al 2018, Holland and Landrum 2021)
and internal variability (i.e. variability arising intrinsically in the coupled climate system that leads to
irreducible uncertainty) (e.g. England et al 2019, 2025).

In the Arctic, the winds are an important source of internal climate variability in sea ice conditions
(e.g. Francis and Hunter 2007, Ogi and Wallace 2007, Wettstein and Deser 2014, Luo et al 2017, Siew
et al 2024) and temperature (e.g. Sweeney et al 2023), as assessed through both observations and models.

© 2025 The Author(s). Published by IOP Publishing Ltd
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Several recent studies have evaluated the combined influence of observed winds and historical anthro-
pogenic forcing on recent Arctic climate change by nudging model winds. One study determined the
contribution of the observed atmospheric circulation to September Arctic sea ice decline, and found
that summertime circulation trends accounted for up to 60% of the decline (Ding et al 2017). Another
recent study analyzed the influence of winds on the observed Arctic temperature and sea ice in a earth
system model simulation with transient anthropogenic forcing and nudged with observed winds (Roach
and Blanchard-Wrigglesworth 2022). Their nudged model reproduced the observed interannual vari-
ability and trends of Arctic annual temperature and September sea ice extent more accurately than a
freely-evolving climate simulation (Roach and Blanchard-Wrigglesworth 2022). Furthermore, Roach and
Blanchard-Wrigglesworth (2022) attributed 20%—-25% of the September sea ice loss to observed winds.
In short, these studies that use historical anthropogenic forcing attribute 20%-60% of the recent sea ice
loss to observed winds.

All this said, the exact amount of Arctic warming and sea ice loss driven by the observed winds
remains unknown. Specifically, the influence of observed winds on a pre-industrial Arctic climate has
not been studied, since all previous work (Ding et al 2017, Roach and Blanchard-Wrigglesworth 2022)
has used wind nudging in earth system models with anthropogenic forcing. The influence of the winds
on the sea ice depends on the mean state, as thicker sea ice is less responsive to the winds and warm-
ing (Holland and Stroeve 2011, Kay et al 2022). Furthermore, constraining the model to historical winds
reduces the noise of internal variability, enabling the signal of mean state sea ice thickness to be easily
detectable with a small ensemble size.

Here, we determine the contribution of historical winds alone to observed Arctic temperature and
sea ice by nudging model winds to reanalysis winds. In particular, we examine the influence of the
winds in the absence of transient anthropogenic forcing on temperature and sea ice Arctic-wide and
regional changes at the annual and seasonal timescales. We also evaluate how the contribution of the
winds changes with a mean state increase and decrease in pre-industrial Arctic sea ice thickness. We find
that the winds alone explain the most internal variability in the spring and drive less than 20% of long-
term trends in annual Arctic temperature and September sea ice extent. In other words, winds cannot
explain the magnitude of observed warming or sea ice loss. We also find these results had little depend-
ence on mean state sea ice thickness.

2. Methods

2.1. Model description and nudging dataset

We used the Community Earth System Model Version 2.1.5 (CESM2) (Danabasoglu et al 2020), a
widely-used and well-documented global earth system model, for all our model experiments. CESM2
has fully coupled atmosphere, land, ocean, and sea ice components. Previous work demonstrates that
CESM2 models Arctic climate well (e.g. Danabasoglu et al 2020, Mcllhattan and L'Ecuyer 2025), despite
a few biases (Danabasoglu et al 2020, DeRepentigny et al 2020, Webster et al 2021, Kay et al 2022). All

of our CESM2 simulations have pre-industrial forcing (e.g. constant 1850 forcing) and ~1° horizontal
grid resolution. CESM2 also has built-in and well-tested nudging capabilities (Roach and Blanchard-
Wrigglesworth 2022, Blanchard-Wrigglesworth et al 2023, 2024, Topdl and Ding 2023). In this work, we
nudged the model winds to reanalysis winds following the methodology of Blanchard-Wrigglesworth
etal (2021) and Roach and Blanchard-Wrigglesworth (2022). This methodology constrains the large-scale
Arctic circulation, while allowing the surface atmosphere to freely respond to changing ice and ocean
conditions. Specifically, we nudge the zonal (U) & meridional (V) wind components with 6 hourly ERA5
reanalysis files (European Centre for Medium-Range Weather Forecasts 2019, updated monthly) from
1950 to 2023 (total 74 years) for 60°-90° N and above 850 hPa.

Atmospheric reanalysis models assimilate all available observations to provide a dynamically consist-
ent estimate of the atmospheric state at each time step. Although reanalyses are derived from observa-
tions, they use both models and observations. For readability the use of ‘observed winds’ in the rest of
this paper refers to the ERA5 reanalysis winds. ERA5 is a state-of-the art reanalysis with reasonable per-
formance for vertical profiles of Arctic winds (Graham et al 2019). That said, we recognize that ERA5
has uncertainties (e.g. Pernov et al 2024) that are a limitation to this work.

2.2. Datasets for evaluation

To evaluate our new nudged experiments, we established several baselines. First, we selected several
observation-based datasets for comparison with our model runs. We use GISS Surface Temperature
Analysis version 4 (GISTEMP) for 2m air temperature anomalies (GISTEMP Team 2024, Lenssen et al
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Table 1. List of coupled modeling science experiments used in this study. All wind nudging model runs use CESM version 2.1.5. All
model compset B1850cmip6 on the standard ~1° horizontal grid resolution (f09_g17). See supplement table S1 for initialization.

Name Description Duration Reference

PI-control Freely-evolving pre- 2000 years Danabasoglu et al
industrial control (1850) (2020)

PI-lessmelt As in PI-control but 550 years Kay et al (2022)

with lessmelt
modifications (Kay et al

2022)

PI-moremelt As in PI-control but 400 years This work
with moremelt
modifications

PInudge Pre-industrial control 74 years, 3 ensemble This work
with nudging to ERA5 members
winds from 60-90° N
and above 850 hPa

PInudge-lessmelt As in PInudge but with 74 years, 3 ensemble This work
lessmelt modifications members
(Kay et al 2022)

PInudge-moremelt As in PInudge but with 74 years, 3 ensemble This work
moremelt modifications members

2024) and ERAS5 reanalysis sea ice concentration and 2m air temperature (European Centre for Medium-
Range Weather Forecasts 2019, updated monthly, Hersbach et al 2020). We kept the ERA5 data at its
original resolution (0.25° x 0.25°) except for the spatial pattern correlations in figures 7, 8 and 13, 14,
where we re-gridded the ERA5 to the CESM2 horizontal grid resolution (~1°). Second, we sampled the
CESM2 pre-industrial control run (PI-control, table 1) to generate a baseline for unforced internal cli-
mate variability. To do so, we took 51 random slices from the 2000-year long PI-control run to generate
a normal distribution. Each slice is 44 years long to match the wind-nudged runs that we analyze (1980—
2023).

We want to highlight that the CESM2 PI-control statistics set the background context for interpreta-
tion of our new wind-nudging experiments. Using these statistics and applying Wilks (2016) for signific-
ance testing, we find that the observed wind trends (1980-2023) are mostly consistent with the unforced
pre-industrial climate of CESM2 (figures S1-S5). In other words, the observed wind trends themselves
could occur in the absence of anthropogenic forcing.

2.3. Model spin-up

In our initial CESM2 experiments, we encountered model drift caused by wind nudging. Our first wind-
nudged experiment (PiC_UVnudge, table S1) had an initial Arctic surface air temperature state 3 K
colder than its pre-industrial control initial condition and displayed a large warming trend (figure 1,
labeled as 1st cycle). We also noted an initial cooler global temperature and increased sea ice extent. We
were unsure whether this result was signal or model drift, since previous atmosphere and ocean stud-
ies have shown that model drift can occur when nudging the winds (Roach et al 2022, Topél and Ding
2023, Garcia-Oliva et al 2024) and may inhibit the reproduction of long-term trends (Greatbatch et al
2012). Therefore, we initialized a second wind nudging experiment (PInudge, table 1) from the first
experiment after 57 years of simulation, corresponding to year 2006 in the observed wind data. We selec-
ted year 2006 because that year was after the global mean temperature in the first experiment stabilized.
If the first experiment results were a signal, we expected the second experiment to exhibit similar tem-
perature trends. If the first experiment results were instead drift, we expected the second experiment to
have a much smaller temperature trend. As shown in figure 1, the second experiment (labeled 2nd cycle)
did have a smaller temperature trend and so we concluded that our model climate had drift associated
with the climate state adjusting to wind nudging.

To remove the drift, we implemented a cycling technique used in ocean modeling. Ocean modeling
projects cycle their atmospheric forcing 5-6 times to spin up the ocean so it reaches an equilibrium state
for the mixed layer (Griffies et al 2014, 2016, Tsujino et al 2020). So, we removed the model drift in our
experiments using a similar technique. For our first and second cycles, we use the same first and second
wind-nudging experiments (PiC_UVnudge and PInudge) discussed previously. To assess whether the
second cycle still had model drift, we ran a third cycle (PiC_UVnudge_2006_2000, table S1) initialized
from year 2000 of the second cycle. As that third cycle was nearly identical to the second cycle (figure 1),
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Figure 1. Annual Arctic (70°-90° N) 2m air temperature for three nudging cycles. Values are plotted as a function of how many
years the model climate has been nudged. The first cycle (experiment PiC_UVnudge) ensemble (dark purple) was initialized from
the PI-control. The second cycle (experiment PInudge) ensemble (purple) was initialized from year 2006 of the first cycle. The
third cycle (experiment PiC_UVnudge_2006_2000) (light purple) was initialized from year 2000 of the second cycle. Vertical
black lines indicate when a new model run was initialized. All model experiments have the trend line for the ensemble mean
plotted. See table 1 for model experiment details.

we concluded that the model drift had been removed in the second cycle and we proceeded to use that
cycle in the following experiments.

2.4. Model science experiments

A complete list of the CESM2 experiments used in this study is available in table 1. All nudging exper-
iments are ensembles in order to sample the internal variability of the wind-nudged pre-industrial cli-
mate system. Our first new science experiment run (PInudge) addresses the influence of the observed
winds alone on the Arctic climate state in absence of anthropogenic forcing. PInudge has three ensemble
members that each span 74 years (length of observed wind timeseries) with model winds nudged accord-
ing to our nudging procedure (table 1). Our second (PInudge-lessmelt) and third (PInudge-moremelt)
science experiments address the contribution of the winds plus a mean state change in sea ice thickness.
Both experiments have the same experimental set-up as PInudge: pre-industrial forcing nudged with
observed winds. The only difference lies in the sea ice model component, such that PInudge-lessmelt
has thicker sea ice and PInudge-moremelt has thinner sea ice (table 1).

The mean state sea ice thickness changes in PInudge-lessmelt and PInudge-moremelt were generated
by parameter modifications. For PInudge-lessmelt, we followed Kay et al (2022), whom modified para-
meters within the CESM2 sea ice model component to produce thicker (figures S7(b) and (e)) and more
expansive sea ice (figures S8(b) and (e)) and a colder climate. For PInudge-moremelt, there were no pre-
viously developed CESM2 parameter combinations for thinner sea ice in a pre-industrial control. So,
we created our own set of ‘moremelt’ parameter modifications by tuning a pre-industrial control (PI-
moremelt) to have thinner sea ice. Initialized from the PI-control at year 811, PI-moremelt is a 400 year
long control run identical to the existing PI-control (Danabasoglu et al 2020) except for a single para-
meter change. In the sea ice component of CESM2 (CICE), we decreased the r_snw parameter from
1.25 to 0.0 standard deviations, thus increasing the dry snow grain radius from 187.5 ym to 500 pm.
This large snow grain radius increase in PI-moremelt decreased the dry snow albedo and in doing so, it
decreased the mean sea ice thickness (figures S7(c) and (f)), sea ice extent (figure 2(a); figures S8(c) and
(f)), and sea ice volume (figure 2(b)).

3. Results

3.1. Influence of observed winds on modeled Arctic surface temperature and sea ice

We first examine the influence of the observed Arctic winds alone on annual mean Arctic temperature
using the wind-nudging experiment PInudge (table 1). The three PInudge ensemble members cannot
reproduce the magnitude of the observed annual Arctic warming between 1980 and 2023 (figure 3).
The PInudge ensemble simulates an annual temperature trend of 0.11 Kdec™!, much smaller than the
observed trend of 0.71 Kdec™! (figure 4). However, the PInudge ensemble members explain 21% of
the observed interannual temperature variability (figure 3). Finally, these ensemble members are mostly
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Figure 2. Seasonal cycles of the PI-control, PI-lessmelt, and PI-moremelt for (a) Arctic sea ice extent and (b) Arctic sea ice

volume. The seasonal cycles are averaged over years 911-1110.
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Figure 3. Annual Arctic (70°-90° N) 2m air temperature timeseries (1980-2023) for observations (ERAS5 reanalysis), PI-control,
and PInudge. The bounds of PI-control are the absolute maxima and minima of the sample for each year. Wind-nudged experi-
ment (PInudge) is plotted as a function of the nudged wind year. Coefficients of determination (annual temperature; detrended
anomalies) are between wind-nudged experiment ensemble mean and ERA5.

within the spread of the pre-industrial control (PI-control). Thus, the observed winds had little influence

on the mean state temperature.

The Arctic has strong seasonality, so we next assess observed and modeled temperature trends by
month (figure 4(a)). We find that PInudge temperature trends (44 years with 1980-2023 winds) are
smaller than the observed trends in every month. This result suggests that the observed winds contribute
little to observed temperature trends regardless of the month. Furthermore, both annual and monthly
temperature trends for PInudge are within the pre-industrial range. Yet despite simulating weak temper-
ature trends, PInudge has more warming in the late fall through spring, in agreement with observations.
In spring, PInudge explains the most warming, about 40% of the observed trend for the months of April

5



10P Publishing Environ. Res.: Climate 4 (2025) 045009 A L Gilbert et al

60
(b) —— Plnudge/OBS (ERA5)
) [} 4
® 5 %
S 5
) g 40
2 | Eg
2 o 301
g E 2
©
g NS 20 A -
2 5 n X
g S 10
5 i -
e =—— OBS (ERA5) N o S
|5 — = OBS (GISTEMP) gb 0 )
= i Pl-control [0}
s 05 Plnud 2
= PInudge >
(% o -101
-1.0 — T T T T T T T T T T -20 T T T T T T T T T T
c Q = = > Cc 05 o QB > (o] - c O X = > Cc 5 o QO B > [ -
S 2 3 S o 9 S o3 3 8 & o
gﬁ'_)§<§—:§7<?$ozog g£§<§—:>_’2$020§
4 Z
Month = Month =
< <

Figure 4. (a) Monthly and annual trends (1980-2023) in Arctic (70°-90° N) 2m air temperature for observations (ERA5 reana-
lysis and GISTEMP), PI-control, and PInudge. The bounds of PI-control are the absolute maxima and minima of the sample
trends. (b) Percent of observed (ERA5 reanalysis) monthly and annual Arctic 2 m air temperature trends explained by PInudge.
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Figure 5. September Arctic sea ice extent timeseries (1980—2023) for observations (ERA5 reanalysis), PI-control, and PInudge.
The bounds of PI-control are the absolute maxima and minima of the sample for each year. Coefficients of determination are
between wind-nudged experiment ensemble mean and ERAS.

and May (figure 4(b)). In summer, PInudge temperature trends are near-zero. In short, the observed
winds have some influence on the seasonal pattern of warming, with the strongest influence in spring
months.

Next, we evaluate the contribution of the winds to the seasonal sea ice minimum in September
(figure 5). The PInudge ensemble does not reproduce the observed (1980-2023) September Arctic sea
ice loss. Specifically, PInudge simulates a September sea ice extent loss of 0.10 million km? dec™!, in con-
trast to the observed loss of 0.92 million km? dec™! (figure 6). Though, PInudge captures 12% of the
September sea ice interannual variability. Additionally, PInudge sea ice extent is mostly within the pre-
industrial control climate. So like the annual Arctic temperature, the observed winds have little influence
on the mean state September sea ice extent.

Having assessed sea ice at the seasonal minimum, we expand to consider the Arctic sea ice
extent trends in all months and annually (figure 6(a)). All monthly sea ice extent trends in
PInudge are much smaller in magnitude than observed trends. Indeed, all PInudge sea ice trends
are less than 0.10 million km? dec™!, whereas the smallest observed sea ice loss in any month is
0.36 million km? dec™!. Furthermore, monthly PInudge sea ice trends are consistent with the pre-
industrial control. These results indicate that the observed winds have little influence on monthly sea
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Figure 6. (a) Monthly and annual trends (1980-2023) in Arctic sea ice extent for observations (ERAS5 reanalysis), PI-control, and
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Figure 7. Local 2m air temperature trends (1980-2023): (a) Observed (ERA5) MAM, (b) Observed JJA, (c) Observed SON, (d)
Observed DJFE, (e)—(h) as in (a)—(d) but for the PInudge ensemble mean. Pattern correlations between observations and PInudge
are provided. Stippling on (e)—(h) indicates PInudge differs from PI-control sample at the 95% confidence level. False discovery
rate was controlled for using Wilks (2016). The colormaps are generated based on work by Crameri et al (2020).

ice loss (figure 6(b)). However, PInudge has more sea ice loss in late summer compared to the rest of
the year.

Since changes in the Arctic are highly location dependent, we next describe local surface temperature
trends for each season in PInudge (figure 7). In every season, the observed warming (figures 7(a)—(d)) is
larger than the PInudge ensemble mean (figures 7(e)—(h)). For example, the largest observed warming in
SON is 2.6 Kdec™!, whereas the warming in the same region of PInudge is only 0.6 Kdec™! (figures 7(c)
and (g)). Moreover, none of the local PInudge temperature trends are significantly different than the
PI-control, in any season. Thus, based on on these comparisons, the observed winds cannot explain the
strength of local temperature trends.

While the magnitude of the warming differs, the regions of strongest warming in PInudge and the
observations are often in agreement (figure 7). This similarity in the spatial pattern of warming between
the observations and PInudge is found in all seasons except summer (JJA). The spatial pattern correl-
ations during MAM (0.71), SON (0.64), and DJF (0.55) are all high. Notably, PInudge reproduces the
observed pattern the best in MAM (figures 7(a) and (e)). This result agrees with our earlier finding that
PInudge explains the most (40%) observed warming in April and May. Additionally, both PInudge and

7



10P Publishing Environ. Res.: Climate 4 (2025) 045009 A L Gilbert et al

) 30 g
<

:

w 20 ©

2 X

% ~

10 2

o

0o &

©

-10 ©

2

S 3

=] -20 [0

£ K]

o ©

-30 8
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are provided. Stippling on (e)—(h) indicates PInudge differs from PI-control sample at the 95% confidence level. False discovery

rate was controlled for using Wilks (2016).

observations have a warm Arctic cold Eurasia (WACE) pattern in DJF (figures 7(d) and (h)). However,
PInudge has weaker warming over the Barents and Bering Seas and stronger and more widespread cool-
ing over Russia during DJF. Regardless, this result suggests that the observed WACE pattern is intern-
ally driven rather than externally forced (Xu et al 2019, He et al 2020, Labe et al 2020). Furthermore,
the observed WACE pattern has been linked to blocking anti-cyclones at the 500 hPa level over north-
ern Europe (Overland et al 2015, Luo et al 2016). The DJF geopotential heights also show an increase
in blocking anti-cyclones northern Europe in both the observations and PInudge, supporting this link
(figures S6(a)—(h)). During JJA, the pattern correlation is much lower than during the rest of the year,
decreasing to 0.39. The JJA pattern in PInudge differs from observations by showing weak cooling
instead of warming over the North Atlantic, North Pacific, and North America (figures 7(b) and (f)).
These weak JJA air temperature trends may result from a net heat transfer into the ocean and sea ice
(e.g. Serreze et al 2009, Screen and Simmonds 2010).

Having compared spatial patterns of temperature trends, we next compare the magnitude of spatial
sea ice concentration trends in PInudge and observations (figure 8). In all seasons, the PInudge ensemble
mean (figures 8(e)—(h)) fails to reproduce the magnitude of the observed (figures 8(a)—(d)) sea ice loss.
For example in the fall (SON), the largest PInudge sea ice loss is 5.1 % dec™! in the Chukchi Sea, but
there the observed sea ice loss is in excess of 20 % dec™! (figures 8(c) and (g)). Yet besides a few weak
sea ice trends (within +2 % dec™!) in the Bering Sea, the PInudge trends are not significantly different
than the PI-control. Like figure 7, these spatial patterns reinforce that the observed winds cannot explain
the sea ice loss magnitude.

Having compared sea ice trend magnitudes, we next analyze sea ice trend spatial patterns (figure 8)
and their association with temperature trend spatial patterns (figure 7). The spatial pattern of max-
imum sea ice loss in PInudge agrees with observations during SON and DJF, but not in MAM and JJA.
Similarly, the spatial patterns of sea ice loss and warming match for both the observations and PInudge
during SON and DJF but not in MAM and JJA. Based on this analysis, we find that observed winds have
some influence on regional patterns of sea ice loss.

3.2. Dependence on mean state sea ice

Next, we assess the influence of thicker (PInudge-lessmelt) and thinner (PInudge-moremelt) mean state
sea ice (table 1) on our results. Surprisingly, we find that the sea ice mean state has little impact on

our results beyond changing the mean state climate. Similar to PInudge, neither PInudge-lessmelt nor
PInudge-moremelt reproduce the magnitude of the observed annual Arctic temperature trend (figure 9).
Specifically, PInudge-lessmelt simulates an annual temperature trend of 0.12 Kdec™! and PInudge-
moremelt simulates 0.14 Kdec™! (figure 10). Similarly, both PInudge-lessmelt and PInudge-moremelt
explain roughly the same amount of interannual variability as PInudge, 19% and 23%, respectively. As
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Figure 10. As in figure 4(a) but also including PInudge-lessmelt and PInudge-moremelt.

for the effect on the mean state Arctic temperature, PInudge-lessmelt is 0.9 K cooler than PInudge and
2.2K cooler than the pre-industrial climate, whereas PInudge-moremelt is 1.8 K warmer than PInudge
and 0.45 K warmer than the pre-industrial climate. These mean state changes result in PInudge-lessmelt
being cold enough to be inconsistent with the PI-control, but PInudge-moremelt is still mostly within
the PI-control spread.

Like temperature, PInudge-lessmelt and PInudge-moremelt have different September mean state sea
ice extents (figure 11). PInudge-lessmelt has more September sea ice than PInudge, whereas PInudge-
moremelt has less September sea ice than PInudge. But, the magnitude of the modeled sea ice trends
and interannual variability are similar in PInudge, PInudge-lessmelt, and PInudge-moremelt. Thus, sea
ice mean state has little impact on the influence of observed winds on the simulated September sea ice
trends.

Re-enforcing that the mean state of the sea ice has little influence on our results, we finally com-
pare the trends by month and spatially. For both monthly temperature (figure 10) and sea ice extent
(figure 12) trends, PInudge, PInudge-lessmelt, and PInudge-moremelt are nearly indistinguishable. While
small, it is worth noting that PInudge-moremelt simulates 50% larger sea ice loss than both PInudge
and PInudge-lessmelt (figure 12). PInudge-moremelt still explains only 16% of the observed trend
(figure S10). In every season, both PInudge-lessmelt (figures 13(a)—(d)); figures 14(a)-(d)) and PInudge-
moremelt (figures 13(e)—(h)); figures 14(e)—(h)) resemble the spatial temperature and sea ice trend pat-
terns from Plnudge (figures 7(e)—(h)); figures 8(e)—(h)).
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4. Discussion

Our study found that in absence of anthropogenic forcing, observed winds cannot explain recent (1980—
2023) Arctic warming or sea ice loss on monthly or annual time scales and on pan-Arctic or regional
spatial scales. The observed warming and sea ice loss explained the wind-nudged experiments is smal-
ler, at most 16%, in contrast to other studies that attribute 20% to 60% (Ding et al 2017, Roach and
Blanchard-Wrigglesworth 2022). Additionally, all of the PInudge, PInudge-lessmelt, and PInudge-
moremelt trends are consistent with the pre-industrial control. In other words, all temperature and sea
ice extent trends forced by the winds alone in the wind-nudged experiments could have occurred in a
pre-industrial climate without wind nudging. For these reasons, although we do quantify the contribu-
tion of the winds to recent Arctic warming and sea ice loss, we do not consider these contributions to
be significant. Therefore, this work agrees that atmospheric circulation is not the sole driver of observed
warming and sea ice loss (Ding et al 2017, Roach and Blanchard-Wrigglesworth 2022).

Another important result is that the winds partially influence observed Arctic temperature and sea
ice variability and spatial patterns. For the annual temperature and seasonal sea ice extent minima, the
observed winds explain between one-tenth and one-fifth of the interannual variability. The observed
winds also drive seasonal patterns of warming and sea ice loss. Our results agree that the observed
winds have considerable influence over spring temperature trends (Rdisinen 2021). In contrast to prior
research, our results suggest the observed winds have little influence on summer temperature and sea
ice extent trends (Baxter and Ding 2022). These findings are consistent with other studies evaluating
the contribution of winds to observed Arctic warming and sea ice loss (Ding et al 2017, Roach and
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Figure 14. As in figure 8 but with PInudge-lessmelt (a)-(d) and PInudge-moremelt (e)—(h) ensemble means.

Blanchard-Wrigglesworth 2022). Furthermore, our results agree that the winds have less influence on
sea ice than temperature (Roach and Blanchard-Wrigglesworth 2022).

While the sea ice thickness changes affected mean state temperature and sea ice extent in PInudge-
lessmelt and PInudge-moremelt, there was limited impact on temperature and sea ice extent trends.
The simulated influence of historical Arctic winds on surface air temperature and sea ice variations had
no dependence on mean state sea ice thickness. However, PInudge-moremelt had slightly larger sea ice
loss trends in late summer than PInudge, but not to the extent that the trends were outside the pre-
industrial control. Temperature and sea ice regional trend patterns, interannual variability, and seasonal
patterns were also unaffected by both the sea ice thickness increase and decrease. We had expected that
the thinner sea ice in PInudge-moremelt would allow the winds to move the sea ice more, causing more
melt and warming (e.g. Holland and Stroeve 2011, Kay et al 2022). Yet our results refuted this expect-
ation. One possible explanation is that without other changes in the mean state atmosphere ocean, any
response from mean state sea ice thickness changes may be dampened. For example, the nudged model
winds transport air from lower latitudes. That air is at pre-industrial temperatures, not warmer, histor-
ical temperatures. Therefore, atmospheric transport in our simulations may not induce as much sea ice
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loss or warming as atmospheric transport in a historical climate. This example can also be applied to the
ocean (Zhang et al 2013).

There are several limitations to this work. First, we limit our conclusions to the model used in this
study, CESM2. Although we recommend replicating this study with other earth system models, we
suspect a different earth system model would confirm our conclusions. We base this on the fact that
earth system models often differ in mean state, but we tested a mean state change and found no effect
on our results. Second, sea ice is thicker in a pre-industrial climate than a historical climate (Kay et al
2022). Since thicker sea ice is less responsive to winds (Holland and Stroeve 2011) and wind nudging,
our wind-nudged experiments may underestimate the influence of observed winds on sea ice trends.
However, we thinned the sea ice to observed historical values in PInudge-moremelt and found no effect
on the observed wind contribution. Third, we note the observed winds experienced anthropogenic for-
cing and indirectly added the forcing to our experiments via wind nudging. From this perspective, our
study is not evaluating the influence of the winds alone. However our analysis of observed wind trends
in section 2.2 showed that anthropogenic forcing had a negligible effect on the winds. Therefore, we dis-
regard the indirect anthropogenic forcing added during nudging. Finally, we note that the Arctic climate
is sparsely observed. While reanalysis winds are constrained by observations, the exact evolution of the
historical winds will never be known. However, it is unlikely that the reanalysis has completely missed
major variations in historical winds that would drive strong warming or sea ice loss trends.

Future work will be aimed at precisely attributing the roles of anthropogenic forcing and winds
on Arctic warming and sea ice loss, using this nudging framework. Indeed, this study provides a novel
framework for wind-nudging CESM2 under different boundary conditions, or combinations of external
forcings. We have presented a base case that provides clarity on the role of the winds alone. This work
will help to constrain projections of Arctic climate by controlling for internal variability when paramet-
erization changes to sea ice thickness (or other aspects of the mean state) are made.

5. Conclusion

In this study, we determined the influence of observed Arctic winds on recent Arctic warming and sea
ice loss from pre-industrial climate model experiments nudged with observed winds. We find that, in
absence of historical external forcing, the observed winds cannot reproduce the magnitude of recent
Arctic warming and sea loss—at most, winds explain 16% of the observed trends. However, the observed
winds can partially reproduce Arctic temperature and sea ice interannual, seasonal, and spatial variabil-
ity. Therefore, we conclude that the atmospheric circulation is not the dominant driver of recent Arctic
warming and sea loss but still plays an important role in Arctic climate variability. Finally, we find that
our results are largely not dependent on mean state sea ice thickness.

Data availability statement

The full climate model data used in this study are available on National Center for Atmospheric
Research Glade Globus Collection at /glade/campaign/univ/ucub0155/glydia. All code to run the model
simulations and process and plot the output is available at https://doi.org/10.5281/zenodo.16884086
(Gilbert 2025a). Data plotted in this paper and its supplement are available at https://doi.org/10.5281/
zenodo.16878063 (Gilbert 2025b).
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